Xiaozhou Zhang
The perception of a stimulus is strongly influenced by the background surrounding it. In mammals, this figure-ground perception to identify stimuli from the environment is crucial for survival, such as detecting predators. My project aims to explore the neural mechanisms behind figure-ground perception, especially focusing on the role of vasointestinal peptide positive (VIP) and somatostatin (SOM) interneurons in the primary visual cortex (V1). To explore the mechanism, I will first develop a novel mice behavioral task that can accurately quantify figure-ground modulation. Then, I will use optogenetics to activate or […]
Emily Zhao

Understanding the genetic basis of organ regeneration remains a central challenge in the field of developmental biology. Teeth are a classic model for organogenesis, since many homologous ectodermal organs (e.g., teeth and hair) follow similar patterns of development and regeneration. Threespine stickleback fish are a powerful model organism for studying tooth regeneration in vertebrates because they possess the ancestral dental phenotype of polyphyodonty, in which teeth are continuously replaced throughout adult life. Past research has shown that Foxc1 regulates Bmp6, a gene important for viability, growth, and tooth patterning […]
Daniel Rostamloo
Algebraic geometry is a rich area of mathematics that investigates the properties of geometric objects (like a variety the solution set of a system of polynomial equations) using their underlying algebraic structure. The closely related field of homological algebra studies how mappings between algebraic spaces (e.g., collections of polynomials) can be understood in terms of more concrete representations with tools from topology and algebra combined to understand the geometric structure of varieties. One homological invariant is a table of numbers called the Betti table, which captures nuanced geometric information about […]
Tannya Tang

In arthropods and vertebrates, Hox genes determine how an organism develops along the axis running from its head to its tail. Little is known of Hox function outside of these standard animal models, but studies in annelids (segmented worms) suggest that Hox genes not only play a conserved role in embryonic patterning, but are also deployed in ways specific to annelids. For example, hox3 is expressed around the posterior growth zone (PGZ), from which all new segments arise. I hypothesize that hox3 is a stem cell marker in annelids that […]
Jianxiang Zhang
Cataract, a clouding of the eye lens, is the leading cause of blindness worldwide. Periaxin (Prx) is a scaffold protein interacting with membrane/cytoskeletal networks in the lens and other cell types and has been implicated in cataract development. My project will investigate the functions of Prx variants in lens cells. Recent studies in the Gong Lab suggest that Prx is a genetic modifier regulating cataract severity in connexin 46 knockout (Cx46KO) mice. Four Prx missense variants have been identified between the 129SvJae (129) and the C57BL/6J (B6) mouse strains. […]
Katrina White

Psychedelics have been used medicinally for thousands of years by Native Americans, but research into their clinical effects and mechanisms was prematurely halted in the 1960s. Exploration of the effects of psychedelics is long overdue. Recent studies have found that single doses of psychedelics can have positive, long-lasting effects, but very few studies examine psychedelic effects on behavior. My project aims to discover how psychedelics influence associative learning behavior. Associative learning involves learning the association between a cue and an outcome. I hypothesize that mice treated with psychedelics will […]
Alexander Richardson

Geometric flows, such as the Ricci flow, Yang-Mills flow, and harmonic map flow, are natural ways to smooth out geometric objects (metric, connection and maps, respectively). In this research project, we will explore the idea of using geometric flows to develop new analytic tools for studying geometric objects. A possible goal of this project is to use geometric flows to solve problems in dispersive PDEs that involve geometric objects.
Amy Wu
This research project examines the rich history and future of midwives of color in the Bay Area through the novel implementation of Science, Technology and Society (STS) frameworks. By defining the midwifery model of care conceived by Bay Area midwives of color as a complex sociotechnical system, the process by which midwives of color have created their models of care can be explored at the intersection of the nation’s capitalistic healthcare system, historic attempts to destroy the knowledge produced by grand midwives in the antebellum period and broader African diaspora, […]
Alexander Toller

Suppose that we have a (finite or infinite) series of independent, identically distributed real-valued random variables (increments of time). From this series, we can form a random walk. We can consider the partial sums of this series and analyze the average value of the walk the partial sum divided by the number of increments up to that point at each of its time increments. This project is focused on studying the distribution of the maximum average value of a random walk through a variety of computational algorithms. While there already […]
Emilie Tu

Contactin-associated protein-like 2 (CNTNAP2) mutations are strongly associated with autism spectrum disorder, which presents with repetitive behaviors. Research has shown that mice lacking CNTNAP2 exhibit decreased numbers of GABAergic interneurons throughout the brain, and that the number and function of these interneurons in the striatum are associated with the presentation of repetitive behaviors. Recent work has shown that enriched environment rearing restores GABAergic interneuron numbers in the striatum and rescues behavioral deficits in rodent models of neuropsychiatric disorders. I will be looking at how different rearing conditions affect striatal gene […]