Emily Ho

Proteins are essential parts of our being, but are also at the root of many health conditions when misformed. One novel approach to treating such diseases is with molecular glues: small molecules that can cause targeted protein degradation or stabilization. My project focuses on a set of potential molecular glues known as gymnastatins, which are natural products originating from the fungal strain Gymnascella dankaliensis. The Nomura Research Group has demonstrated that gymnastatins have antiproliferative effects on breast cancer cells. Dankastatin B, the most potent gymnastatin against cancer cell viability, targets […]
Madison de Vere

This summer, I will be traveling to Suva, Fiji with a research team from UCSF led by Dr. Deborah Dean. As part of a longitudinal study started in 2018, we aim to identify Ng antibiotic susceptibility patterns and determine current rates of resistance to antibiotics. With this in mind, we are also looking to determine the association of antibiotic resistance (AR) Ng strains with clinical signs and symptoms. In addition, we are looking at current Ng-Ct co-infection rates, in order to determine the longitudinal prevalence of Ng and STIs and […]
Zahir Chaudhry

Invasive breast cancer affects 1 in 8 women in the US, with over 270,000 new cases diagnosed annually. With significant advancements in diagnosis and treatment, approximatey 90 percent of deaths are related to metastasis, the migration of cancer cells from the primary tumor to peripheral organs. Here, a subpopulation of tumor cells relies on phenotypic transitions to gain traits that aid in migration and invasion. This rare population of cells exists on a spectrum of phenotypes and is more resistant to treatment, highlighting the importance of increased investigation. The goal […]
Jennah Brown

Mitochondrial function and metabolic flexibility (the ability to switch back and forth between carbohydrate and lipid utilization in response to changing physiological conditions) degrade as a normal consequence of aging. Metabolic flexibility is regulated by several mechanisms that are affected by the capacity for lactate oxidation and, therefore, mitochondrial function. Previous studies have demonstrated that endurance training improves metabolic flexibility due to improvements in mitochondrial function and the capacity for lactate oxidation. The purpose of my research is to assess metabolic flexibility in older and younger, trained and untrained individuals […]
Arjun Grover

If you have gone to a fast-casual restaurant within the last few years, you will be all too familiar with how the process of tipping works. After the cashier taps your order into the restaurant‚Äôs tablet device, they flip it around with tip options for you to select. The bubbles can range from percentages to dollar amounts, depending on the restaurant (e.g., 15%, 20%, 25%, $1, $2, $3, etc.). Unlike past studies on tipping, which look at situations in which the cashier leaves and returns to pick up your check, […]
Rocky Hughes
In recent years, the study of 2D materials consisting of atomically thin sheets of matter has exploded into a vibrant research area pursued by materials chemists and condensed matter physicists alike. The structures of these materials bring about many exotic properties which, in the near future, are projected to see groundbreaking applications in energy conversion and storage, as well as low-power computation. The behavior of electrons in 2D materials can be significantly altered by bringing flakes of differing chemical structures into contact. My project aims to better understand and exploit […]
Samantha Breuer

In the Ajoy Lab, we use a custom nuclear magnetic resonance (NMR) apparatus that uses high-powered lasers and microwaves to hyperpolarize samples for signal enhancement. My project will work to optimize the microwave frequency, sweep rate, and bandwidth of our apparatus to increase the lifetime of a nanodiamond sample. Increasing the lifetime of the nanodiamond sample is beneficial to resolution, as it increases the amount of time we can collect data from milliseconds to minutes. This is relevant to the field as the optimization of the nanodiamond sample, and increase […]
Diana Francis

At night, the Cassiopea jellyfish slows its activity and enters a sleep state. Because sleep research focuses on models with centralized nervous systems, the sleep behavior of this brainless, decentralized jellyfish exposes a gap in the field that my project will address. In particular, I plan to test our novel RNA interference (RNAi) technique and use it to characterize the molecular mechanisms of sleep in Cassiopea. My lab recently developed the first RNAi protocol for jellyfish, a significant feat given that standard techniques are not easily applied to this nontraditional […]
Victor Canta-Gallo

This project focuses on gaining a deeper understanding of transposable elements (TEs) within monkey flowers. Previously, TEs were thought to be virus-like, parasitic parts of genomes. With the use of supercomputers, we will compare the genomes of many monkey flower genome samples to a reference genome to identify variation that suggests adaptation. Our work will define the role of TEs more clearly, as many are associated with mutations and only arise during specific conditions, which suggests a form of adaptation.
Samuel De Riseis

Sorghum bicolor is a biofuel feedstock and staple food crop. My research focuses on understanding the role of a core circadian clock component, Sorghum bicolor Gigantea (SbGI), in modulating sorghum sensitivity to cryptochrome signaling at different times of the day. In related grasses, cryptochromes, activated by blue light, upregulate active gibberellin degradation genes to strategically cease plant elongation. Importantly, the SbGI mutant has a severe stunted-growth phenotype relative to the wild type, and preliminary protein interaction results suggest that SbGI and cryptochromes interact. These observations inform my hypothesis that SbGI […]