Tina Li Rose Hills
Learning from an Ancient Process: Using Gametogenesis Pathways to Rejuvenate Aging Cells
Cellular aging is a nearly universal trait of all organisms and is a risk factor for a variety of human diseases. Cellular rejuvenation occurs in every human body during gametogenesis, the process by which we form gametes, also known as sperm and egg. In yeast, overexpression of a gametogenesis-specific transcription factor, Ndt80, has been shown to extend lifespan and rejuvenate the nucleolus in aging cells. Using genome-wide screening of gametogenesis genes, the Ünal lab has identified 86 rejuvenation candidates that can extend yeast lifespan. My research will focus on characterizing a subset of these candidates and identifying those that can counteract age-associated expansion of the nucleolus, a common biomarker of cellular age. Using fluorescence microscopy, I will determine how aging affects different nucleolar proteins in a wild-type context and then determine which rejuvenation candidates can reverse these age-related nucleolar phenotypes. My research will give insight into how aging affects the nucleolus and will lead to the discovery of new gene targets that can be used for cellular rejuvenation strategies in the future.