Kenneth Trang Rose Hills
Characterizing the assembly and ecological succession of the C. elegans gut microbiome composition during larval development
Bacteria inhabit almost every surface on Earth, from tabletop to hydrothermal vents. Thus, it’s unsurprising that a diverse community of microbes also thrives within the human gut. However, these residents aren’t stowaways, as strong evidence has emerged in the last decade that a well-balanced community of gut bacteria is indispensable to human health. And yet, our understanding of the genetic factors involved in selecting what gut microbes can colonize and persist remain limited. This summer, I research the effect of host genetics on the composition of the gut-microbiome, focusing on the effect of individual genes on compositional changes occurring during early development in the model organism Caenorhabditis elegans. This unprecedented work will not only constitute the first experimental investigation into the role of individual genes in the initial establishment of the gut microbiome composition of any animal host, but also contribute more generally to our understanding of the fundamental rules governing the assembly of the gut microbiome composition – research essential in fulfilling the ultimate goal of shaping the gut microbiome to improve human health.